Output list
Journal article
Nanoscale reshaping of resonant dielectric microstructures by light-driven explosions
Published 21/10/2023
Nature communications, 14, 1, 6688 - 6688
Femtosecond-laser-assisted material restructuring employs extreme optical intensities to localize the ablation regions. To overcome the minimum feature size limit set by the wave nature of photons, there is a need for new approaches to tailored material processing at the nanoscale. Here, we report the formation of deeply-subwavelength features in silicon, enabled by localized laser-induced phase explosions in prefabricated silicon resonators. Using short trains of mid-infrared laser pulses, we demonstrate the controllable formation of high aspect ratio (>10:1) nanotrenches as narrow as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }{{{\boldsymbol{\lambda }}}{{{\boldsymbol{/}}}{{{\boldsymbol{80}}}$$\end{document} ~ λ / 80 . The trench geometry is shown to be scalable with wavelength, and controlled by multiple parameters of the laser pulse train, such as the intensity and polarization of each laser pulse and their total number. Particle-in-cell simulations reveal localized heating of silicon beyond its boiling point and suggest its subsequent phase explosion on the nanoscale commensurate with the experimental data. The observed femtosecond-laser assisted nanostructuring of engineered microstructures (FLANEM) expands the nanofabrication toolbox and opens exciting opportunities for high-throughput optical methods of nanoscale structuring of solid materials. Laser machining can modify and reshape materials on the scale comparable to light’s wavelength. Here, authors use tailored microstructures to push the limit of laser machining to a scale that is almost 100 times smaller than a wavelength of light.
Journal article
Published 22/11/2021
Optics express, 29, 24, 39983 - 39999
High peak and average power lasers with high wall-plug efficiency, like the Big Aperture Thulium (BAT) laser, have garnered tremendous attention in laser technology. To meet the requirements of the BAT laser, we have developed low-dispersion reflection multilayer dielectric (MLD) gratings suitable for compression of high-energy pulses for operations at 2 micron wavelength. We carried out 10000-on-1 damage tests to investigate the fluence damage thresholds of the designed MLD gratings and mirrors, which were found between 100-230 mJ/cm(2). An ultrashort pulsed laser (FWHM = 53 fs, lambda = 1.9 mu m) operating at 500 Hz was used in the serpentine raster scans. The atomic force microscope images of the damage sites show blister formation of the underlying layers at lower fluences but ablation of the grating pillars at higher fluences. We simulated the dynamic electronic excitation in the MLD optics with a finite-difference in the time domain approach in 2D. The simulation results agree well with the LIDT measurements and the observed blister formation. This model is able to evaluate the absolute LIDT of MLD gratings. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Journal article
Supercontinuum generation in single-crystal YAG fibers pumped around the zero-dispersion wavelength
Published 01/09/2021
Applied optics (2004), 60, 25, G126 - G131
Yttrium aluminum garnet (YAG) is a common host material for both bulk and single-crystal fiber lasers. With increasing interest in developing optical technologies in the short-wave infrared and mid-infrared wavelength range, YAG may be a potential supercontinuum medium for these applications. Here, we characterize femtosecond laser pumped supercontinuum generation with 1200-2000 nm pump wavelengths (lambda(p)) for undoped, single-crystal YAG fibers, which are representative of the normal, zero, and anomalous-dispersion regimes. Supercontinuum was observed over the spectral region of about 0.2 to 1.6 lambda(p). Z-scan measurements were also performed of bulk YAG, which revealed little dispersion of the nonlinear index of refraction (n(2)) in the region of interest. The measured values of n(2) (similar to 1 x 10(-6) cm(2)/GW) indicate a regime in which the nonlinear length, L-NL, is less than the dispersion length, L-D, (L-NL << L-D). We report intensity clamping of the generated filament in the normal group velocity dispersion (GVD) regime and an isolated anti-Stokes peak in the anomalous GVD regime, suggesting further consideration is needed to optimize supercontinuum generation in this fiber medium. (C) 2021 Optical Society of America
Journal article
Published 07/07/2021
Nature communications, 12, 1, 4185 - 4185
High harmonic generation (HHG) opens a window on the fundamental science of strong-field light-mater interaction and serves as a key building block for attosecond optics and metrology. Resonantly enhanced HHG from hot spots in nanostructures is an attractive route to overcoming the well-known limitations of gases and bulk solids. Here, we demonstrate a nanoscale platform for highly efficient HHG driven by intense mid-infrared laser pulses: an ultra-thin resonant gallium phosphide (GaP) metasurface. The wide bandgap and the lack of inversion symmetry of the GaP crystal enable the generation of even and odd harmonics covering a wide range of photon energies between 1.3 and 3 eV with minimal reabsorption. The resonantly enhanced conversion efficiency facilitates single-shot measurements that avoid material damage and pave the way to study the controllable transition between perturbative and non-perturbative regimes of light-matter interactions at the nanoscale.
Strong nonlinearities, like high harmonic generation in optical systems, can lead to interesting applications in photonics. Here the authors fabricate a thin resonant gallium phosphide metasurface capable of avoiding the laser-induced damage and demonstrate efficient even and odd high harmonic generation from it when driven by mid-infrared laser pulses.
Journal article
Random quasi-phase-matching in polycrystalline media and its effects on pulse coherence properties
Published 01/03/2021
Optics express, 29, 5, 7479 - 7493
Polycrystalline materials can mediate efficient frequency up-conversion for mid-infrared light. Motivated by the need to understand the properties of the harmonic and supercontinuum radiation from such media, we utilize realistic numerical simulations to reveal its complex temporal and spatial structure. We show that the generated radiation propagates in the form of long-duration pulse trains that can be difficult to compress and that optical filamentation in high-energy pulses gives rise to fine-structured beam profiles. We identify trends concerning pulse energy, sample length, and the microstructure of the material that can inform optimization for different applications. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Journal article
The NANOGrav 12.5 yr Data Set: Wideband Timing of 47 Millisecond Pulsars
Published 21/12/2020
The Astrophysical journal. Supplement series, 252, 1
We present a new analysis of the profile data from the 47 millisecond pulsars comprising the 12.5 yr data set of the North American Nanohertz Observatory for Gravitational Waves, which is presented in a parallel paper (Alam et al., hereafter NG12.5). Our reprocessing is performed using "wideband" timing methods, which use frequency-dependent template profiles, simultaneous time-of-arrival (TOA) and dispersion measure (DM) measurements from broadband observations, and novel analysis techniques. In particular, the wideband DM measurements are used to constrain the DM portion of the timing model. We compare the ensemble timing results to those in NG12.5 by examining the timing residuals, timing models, and noise-model components. There is a remarkable level of agreement across all metrics considered. Our best-timed pulsars produce encouragingly similar results to those from NG12.5. In certain cases, such as high-DM pulsars with profile broadening or sources that are weak and scintillating, wideband timing techniques prove to be beneficial, leading to more precise timing model parameters by 10%-15%. The high-precision, multiband measurements of several pulsars indicate frequency-dependent DMs. Compared to the narrowband analysis in NG12.5, the TOA volume is reduced by a factor of 33, which may ultimately facilitate computational speed-ups for complex pulsar timing array analyses. This first wideband pulsar timing data set is a stepping stone, and its consistent results with NG12.5 assure us that such data sets are appropriate for gravitational wave analyses.
Journal article
The NANOGrav 12.5 yr Data Set: Observations and Narrowband Timing of 47 Millisecond Pulsars
Published 21/12/2020
The Astrophysical journal. Supplement series, 252, 1
We present time-of-arrival (TOA) measurements and timing models of 47 millisecond pulsars observed from 2004 to 2017 at the Arecibo Observatory and the Green Bank Telescope by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). The observing cadence was three to four weeks for most pulsars over most of this time span, with weekly observations of six sources. These data were collected for use in low-frequency gravitational wave searches and for other astrophysical purposes. We detail our observational methods and present a set of TOA measurements, based on "narrowband" analysis, in which many TOAs are calculated within narrow radio-frequency bands for data collected simultaneously across a wide bandwidth. A separate set of "wideband" TOAs will be presented in a companion paper. We detail a number of methodological changes, compared to our previous work, which yield a cleaner and more uniformly processed data set. Our timing models include several new astrometric and binary pulsar measurements, including previously unpublished values for the parallaxes of PSRs J1832−0836 and J2322+2057, the secular derivatives of the projected semimajor orbital axes of PSRs J0613−0200 and J2229+2643, and the first detection of the Shapiro delay in PSR J2145−0750. We report detectable levels of red noise in the time series for 14 pulsars. As a check on timing model reliability, we investigate the stability of astrometric parameters across data sets of different lengths. We also report flux density measurements for all pulsars observed. Searches for stochastic and continuous gravitational waves using these data will be subjects of forthcoming publications.
Journal article
Published 01/05/2020
Optics letters, 45, 9, 2672 - 2675
The importance of high intensity few- to single-cycle laser pulses for applications such as intense isolated attosecond pulse generation is constantly growing, and with the breakdown of the monochromatic approximation in field ionization models, the few-cycle pulse (FCP) interaction with solids near the damage threshold has ushered a new paradigm of nonperturbative light-matter interaction. In this Letter, we systematically study and contrast how femtosecond laser-induced damage and ablation behaviors of SiO2/HfO2-based reflective multilayer dielectric thin film systems vary between FCP and 110 fs pulses. With time-resolved surface microscopy and ex situ analysis, we show that there are distinct differences in the interaction depending on the pulse duration, specifically in the "blister" morphology formation at lower fluences (damage) as well as in the dynamics of debris formation at higher fluences (ablation). (C) 2020 Optical Society of America.
Journal article
Published 2020
We investigate the nonlinear optical properties of transparent optical materials using ultrashort midwave infrared laser pulses between 3 and 4 microns. Random quasi-phase matching in polycrystalline materials generates multiple frequency harmonics of both odd and even orders throughout the transmission window of the target. We also investigate single crystal and amorphous materials and demonstrate a range of frequency conversion and pulse broadening. Simulations using a nonlinear polarization model enhanced with ionization and experimentally measured n(2) values provide good qualitative agreement with experimental data. Immediate access This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.